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IMAGE INVERSION ANALYSIS OF THE HST OTA

JPL Proposed Contract No. 958888, TRW S/N 57661

TECHNICAL FINAL REPORT Phase A

M. M. Litvak, March 15, 1991

Abstract

Technical work during September-December 1990 consisted of 1) analyzing
HST point source images obtained from JPL, 2) retrieving phase information
from the images by a direct (noniterative) technique, and 3) characterizing the
wavefront aberration due to errors in the Hubble Space Telescope (HST)
mirrors, in a preliminary manner. This work was in support of JPL design of
compensating optics for the next generation wide-field planetary camera on
HST. This digital technique for phase retrieval from pairs of defocused images,
is based on the energy transport equation between these image planes. In
addition, an end-to-end wave optics routine, based on the JPL Code V
prescription of the unaberrated HST and WFPC, was derived for output of the
reference phase front when mirror error is absent. Also, the Roddier routine
unwrapped the retrieved phase by inserting the required jumps of +2= radians
for the sake of smoothness. A least-squares fitting routine, insensitive to phase
unwrapping, but nonlinear, was used to obtain estimates of the Zernike
polynomial coefficients that describe the aberration. The phase results were
close to, but higher than, the expected error in conic constant of the primary
mirror suggested by the fossil evidence. The analysis of aberration contributed
by the camera itself could be responsible for the small discrepancy, but was not
verified by analysis. The wavefront Zernike coefficient Z11 (in HST OTA
Handbook convention) was found to be -0.27 and -0.28 p.m for the H1 -I1
(HARP 1A data)and O1-P1 (HARP 1B data) pairs of images, respectively. The

standard deviation error in these quantities was approximately +0.005, due to
the iterations with the nonlinear fitting routine for Zernike coefficients. The

implied conic constant for the primary mirror was -1.01 41 and -1.01 46 +0.0002
compared to the design value of -1.0022985.

New Technology. No new technology was identified.
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1.0 Introduction

The Hubble Space Telescope (HST) has not performed as well as designed
owing to an imperfect mirror (or mirrors). The Jet Propulsion Laboratory (JPL) is
to define the mirror imperfections and to plan a hardware fix in their Wide Field
Planetary Camera (WF/PC) to compensate for the aberrations. The work
reported here supported JPL in defining the HST aberration by means of a
direct phase retrieval technique. This technique operated on digital images of
stars to obtain the shape of the optical wavefront in the exit pupil plane. This
wavefront distortion was defined in classical terms such as spherical aberration,

coma, astigmatism, and so on. This wavefront analysis also would lead to a
Code V prescription, for example, of optical elements of the WF/PC that would
be needed to compensate for the aberrations.

Early on, it was recognized that spherical aberration was present in large
amounts. This led to the suspicion of an incorrect conic constant, which
specifies the hyperboloid shape of the primary mirror. The purpose of the
phase retrieval work was to quantify this suspicion, and to determine if other
errors existed in the primary mirror, other errors might be in the secondary
mirror and the camera. A strategy of using multiple off-axis images for
distinguishing secondary from primary mirror errors was voiced by various
participants at the first HARP Image Inversion Workshop. To date little work
toward this end has been done due to a lack of images at sufficiently large field

angles.

The imperfections in the camera might be another story. There is a difference in
conic constant error estimates from the fossil evidence (interferograms and
notebooks at Perkin-Elmer, now Hughes Danbury Optical Systems), and from
the Zernike polynomial coefficient in the phase retrieval effort. This, albeit small,
difference of conic constant might be attributed to the camera. End-to-end
modeling that includes the camera, with its distinguishing obscurations, has
been part of the phase retrieval effort.

Much of the phase retrieval work by others consisted of 1) least-squares fitting
of images generated by OTA-camera models with image data, 2) iterative
automatic fitting by repeated single or double Fourier transforming between
pairs or triplets of image planes and their corresponding pupil planes, and 3)
neural network Zernike polynomial output after training with simulated images
of known Zernike polynomial input. The work reported here was a direct
(noniterative) phase retrieval technique that solves a nonlinear differential
equation to complete the field information in the image plane so that a Fourier
transform retrieves the pupil plane phase that was sought.

According to PC data, the Airy disk of the point spread function (PSF) would
cover a few pixels if the OTA operated as designed. The present condition
seemed to result in a peak nearly as sharp but with significant intensity in rings
and spokes around the peak.
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2.0 Technical Purpose

The work consisted of the following three technical tasks for defining the Hubble
Space Telescope (HST) aberration by means of the direct (noniterative) phase
retrieval technique developed at TRW. This technique was based on the
Gonsalves 'phase diversity' algorithm, which processed pairs of images that
differed by a small amount of defocus.

2.1 T_.$k 1. Analysis of JPL Star Images

Digital images were input to the phase retrieval code. The code was modified
as follows: 1) to read-in the image data, 2) to define a limited field of view
containing each star image, and 3) to register (align) the focus/defocus image
pairs.

Simulation of the image intensity distribution for these different cases of
wavelength filter and secondary mirror positions was done for two purposes: 1)
to allow tests of the phase retrieval algorithm for known amounts of aberration
and 2) to enable interpolation between pixels of data for more accurate phase
retrieval.

Only cases of star objects lying on axis were analyzed.

2.2 Task 2. Im.olementation of .ohase retrieval code

Wave optics of the HST optical train was simulated, as needed for phase
retrieval purposes. The code was modified 1) for the effects of apertures,
obscurations, etc., and 2) for the mirror displacement aberrations. The phase
retrieval code was executed on a VAX 8650 system and a 386-PC (25 MHz, 16
Mbytes RAM) 1) to produce Zernike polynomial fits to the wavefront, and 2) to
estimate error limits on the phase retrieval accuracy.

2.3 Task 3. Derivation of 0reliminary wavefront characteristics

Seidel or Zernike polynomial contributions were estimated after the polynomial-
fit routine was integrated into the code. Contour maps of the pupil-plane phase
were used to clarify the results. Errors in the wavefront reconstruction by phase
retrieval were estimated. Preliminary conclusions were drawn on the conic
constant error of the OTA primary mirror.
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3.0 Technical Approach

A direct (noniterative) technique for retrieving the phase distortion in the optics
of instruments such as the Hubble telescope has been developed, and was
used with Hubble telescope data. This technique took the digital information
from distorted images of a star at two or more focus settings fairly close together;
for example, at center focus and at ,say, half the depth of focus. The
requirement was to obtain the local rate of change of the intensity at each pixel
with respect to the amount of defocus, in each wavelength band. The more
accurate this estimate was, despite noise in the image (including quantization
noise due to limited numbers of bits per pixel), the more accurate was the phase
map that would be generated.

A simple partial differential equation (based on R. A. Gonsalves' work on 'phase
diversity'), using this intensity data, was solved for the phase associated with
the aberrated image. The complex field in the image plane was then Fourier
transformed to obtain the complex field in a pupil plane. Fresnel wave optics
propagation to any other pupil plane was done easily, when needed. The
phase of this transform field was displayed then as a contour map to visualize
the aberrations This phase was analyzed in terms of the usual polynomials like
spherical aberration, astigmatism, and coma for convenient analytic
characterization.

This was the stage of work (Phase A) that identified the nature of the aberration
for hardware fixes to the instruments (JPL's WF/PC, for example) in order to
compensate for the phase error in the telescope optics. Note that amplitude
correction as well as this phase correction also could be applied at the pupil
plane. Phase retrieval in each wavelength band should be consistent with the
same optical path difference owing to the surface figure error of primary and/or
secondary mirrors. With the proper variety of PSF's obtained with the WF/PC
and the Faint Object Camera, with differing angular offsets, the retrieved phase
maps could reveal the analytic form of the surface figure for the primary and
secondary mirror, a necessary first step in the optical redesign task for the
cameras.

The following is a description of the direct phase retrieval method that utilizes
the photon energy transport equation. This equation is applied in the vicinity of
the image plane (near paraxial focus) but the equation is applicable at any
general position.
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3.1 Direct Phase Retrieval Method

FOURIER RELATIONSHIP BETWEEN PUPIL AND IMAGE PLANES

Consider the simple geometry of a pupil plane on one side and an image plane
on the other side of the lens equivalent of the telescope and camera system. F
is the effective focal length. The wavevector magnitude is

2_

_, (3.1)

The image plane field h(x,y) is obtained from an integral solution of the Fresnel
wave equation, when the pupil plane field H(u,v) is given.

h(x,y) _=_-iZF exp[ik(x 2 + y2) / 2F)]

j" duj" dvexp[-2rdB(u 2 + v2)]exp[-2_(ux + vy)]H(u,v)
(3.2)

where the spatial frequency components u, v are

u = X/XF v = Y/XF

and X, Y are the coordinates in the pupil plane. Because of the integration over
u and v instead of X and Y, the coefficient in the expression for h(x,y) is -iXF
instead of the well-known -i/(XF). The defocusing parameter B is proportional to
the despace from the paraxial focus position.

Omit the first phase factor (and coefficient) according to the R. Gonsalves'
approximation,

h(x,y) = j" duj" dvexp[-2_B(u 2 + v2)]exp[-2_i(ux + vy)]H(u,v)

This field obeys the following Fresnel diffraction equation

-2_ m_ = V 2h
o_B

032 032

where V2 = j 4- --_

(3.3)

(3.4)

and where h = hlexp(i_) (3.5)
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Eq. (3.4) is still valid even without the above Gonsalves approximation, when
the distance to the focal plane F is replaced by the variable (z+F), and the
defocus parameter B is replaced by BF/(z+F) in Eq. (3.2). The approximation
holds for small z compared to F.

The image field equation, which is complex-valued, yields two real-valued
image equations, one for the derivative of the intensity with respect to B, and the
other for the derivative of the phase with respect to B.

These results apply to any plane, not just the image plane, except where a
Fourier transform relationship to the pupil plane is invoked.

FIRST IMAGE PLANE EQUATION

The first equation, for conservation of energy, is (generalized Gonsalves case;
R. A.Gonsalves, "Phase retrieval by differential intensity measurements," J. Opt.
Soc. Am. A, 4, 166-170, 1987; also see K. Ichikawa, A. W. Lohmann, and M.
Takeda, "Phase retrieval based on the i rradiance transport equation and the
Fourier transform method: experiments," Appfied Optics, 27, 3433-6, 1988)

oqh 2

= V.(h2V )
(3.6)

where the right-hand side parentheses contain the energy flux. All gradient,
divergence or curl operations are with respect to the variables x and y, and not
z. This equation holds generally in any plane, within the Fresnel propagation
approximation, when B is replaced by its equivalent that is proportional to the z-
variable.

This energy transport equation is obtained from the field equation by separating
the real and imaginary parts of the equation after substituting for the field its
equivalent magnitude times phase factor. The transport equation comes from
the imaginary part, while the second equation, given later, comes from the real
part.

The change AB in the defocus parameter B is proportional to the amount of
defocus AZ.

AB = _Az
2

A value of defocus distance

F 2
Az = 82,

D2

(3.7)
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yields one wave change at the pupil edge (diameter D). The effective Fno" of
the telescope and camera system is F/D. This particular length Az is the spatial
period for the spots of Arago on the optical axis.

The general form for the image-plane phase, ¢_ , is obtained from the flux

hl2V¢ = Vl//+ V xA (3.8)

in terms of unknown potentials t//and A. Note that div(curl A) = 0. So that the
curl part of the flux does not help balance the change in intensity along the z-
direction.

The most important step is to solve Poisson's equation for

(3.9)

Note that V 2 _ relates to the intensity change axially alone, while _72¢ relates

to the intensity change along a ray, axially, and sideways as well, as given by

the direction of V _.

Let it be noted that without the curl A contribution the contours of constant

phase are parallel to the contours of constant intensity.

SECOND IMAGE PLANE EQUATION

The second equation that obtains from the field equation

-2m 8h = V2h

o_B (3.10)

is

-/'c'
2 h V21h

the equivalent of the Eikonal equation.

A spatially-varying refractive index term is included customarily.

(3.11)

Because the unknown components of the gradient of the phase, in both axial
and transverse directions, appear in this equation, there is no application for
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this Eikonal equation as such. Of course, the original, simpler Fresnel equation
for the complex field would be valid at any point and would be preferable to
using Eq. (3.11) anyway.

PHASE RETRIEVAL EQUATION SOLUTION

The left-hand side of the phase retrieval equation is approximated by means of
the small differences between two images that are slightly defocused from each
other.

o_hi2
= (Pixel-by-Pixel Differences) / AB

The defocus distance, that is, the difference of position z_z is related to the
difference in the so-called Goddard position as

AZ = 110.(1.25) 2 x Goddard position difference.

For example, Goddard position difference = 5 p.m yields 3,z = 0.86 mm.

SPECIAL IMAGE PLANE CYCLIC FLQW SOLUTIONS TO ADD

Generally, the contours of constant phase are not parallel to the contours of
constant intensity. Aside from trivial differences owing to an overall tilt to the
phase wavefront, this difference of contour maps can be attributed to the curl A
contribution, referred to here as cyclic flow solutions. This is in analogy to the
vortex flows in hydrodynamics. Since the +2_ phase jumps caused by these
wavefront dislocations, do not affect the actual values of the fields themselves,
the propagation to the near field or the pupil plane is unchanged as well. So
the inclusion of these cyclic solutions in the image planes is not necessary for
retrieving the phase in the pupil plane. However, these dislocations or vortices
occur wherever the intensity is zero. This is especially true of the exit pupil
plane due to the effect of the obscurations.

The following discussion of the image plane is to better understand these cyclic
solutions in general. The same equations for the field amplitude and phase
hold for any plane, not just an image plane. And in particular, it is these same
cyclic flows, which occur in the pupil plane, that are specially treated to yield the
underlying smooth wavefront to be approximated by Zernike polynomials, for
example.

To represent straight vortex filaments parallel to the optical axis, the vector
potential A is allowed to have a z-component only, as an approximation. The
gradient operator applies here only to the x and y coordinates. Then,

A = a(x,y)e z
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and

VxA=Vaxe z (3.12)

and the added phase ¢o is given by

Ihl2V¢o = Vaxe z
(3.13)

Va Va4 =vxv o +
inI- tnl-

where the vorticity, in a discrete representation, is

_. = _ qj_{2)(r- rj)
J

upon allowing negligible variation in the z direction. This is an allowance that
should be reexamined in the light of the focal plane in the classic case of the
circular aperture discussed later. But for now, one obtains

(3.14)

except at points rj where the intensity Ihl 2 vanishes. At these nulls the right-
hand side of Eq. (3.14) is proportional to a delta function such that integrating
over it yields a +2= change (qj = +1). Let

where, because of Eq. (3.14),

V2z=O
(3.15)

The contours of constant a or Z are parallel to those of constant intensity or _.
Laplace's equation is solved with the boundary condition that the circulation
singularity strength be +2_ or -2= wherever the intensity has a simple zero.
These singularities are wavefront dislocations (like vortex filaments or sheets).
With an explicit z dependence reintroduced, these vortex filaments and sheets
may close upon themselves in a three-dimensional manner. This matter is
pursued further in the section on special solutions.

TRW 8



Thus,

X,= Inlhl + ...

where the additional non-singular term (denoted by the ellipses) is another
function of \h\ that allows X to satisfy Laplace's Eq. (3.15) with the appropriate
geometrical boundary conditions, and to follow the contours of constant
intensity.

The phase contribution q)o is given by

V2_o =0 (3.16)

where _)o is the imaginary part of the analytic function (in a region avoiding the

dislocations and made singly-connected by branch cuts), whose real part is Z.

These considerations of phase dislocations and vortex filaments apply to any
plane, not just the image plane. In particular, the pupil plane phase has several
dislocations, which are locally averaged out (in the Roddiers' POLE routine
described later) to yield the desired smooth Zernike polynomial representation
of the wavefront error and, hence, the primary mirror deformation.

APPROXIMATE SOLUTION FOR IMAGE PLANE PHASE

Solve for the phase from

v¢) v_=--+7 Z Xe z
hi2

Note the mathematical identity that

v-vzxez=0

(3.17)

Then, the phase is

= V-2V'(_-_)+ ¢o

where

V V = -7rV-2V__

(3.18)

(3.19)
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The operations of inverse Laplacian _ 7-2 and so on are easily implemented in
Fourier space, or in the case of cylindrical symmetry, in appropriate radial-
coordinate integration.

When ¢o is unimportant, phase contours are parallel to intensity contours.
Phase contours are sensitive to details of log (intensity).

The contours of constant ¢o are perpendicular to the contours of constant

intensity, in this approximation. The intensity contours are like streamlines to
the flow, which is given by the gradient of this added phase. This is cyclic flow
around the zero intensity points and confined by the intensity contours.

With the phase ¢ determined, perform the Fourier transform of

JhJexp(i¢)

Obtain

H = IHlexp(i¢) (3.20)

Then, obtain the exit pupil phase @. Basically, this is the phase to be retrieved.

When the corresponding phase is obtained for the unaberrated case, that
phase can be subtracted from this exit pupil phase to obtain the contribution
due to the aberration itself. The amplitudes can be corrected also.

SPECIAL VORTEX SOLUTION

The classic case of the field dis.trib,_tion due to an illuminated circular aperture
shows that the z-dependence of the .& potential can be abrupt, contrary to the
assumptions so far. The vortex filaments consist of a set of infinitesimally thin
concentric rings, which lie in the focal plane alone and which encircle the
optical axis. These lie at the locations of the Airy dark rings. Meanwhile, on
axis are infinitesimal vortex rings, similar to dipoles or doublets, that lie at the
periodic minima, the dark spots of Arago. Between these are the more famous
bright spots. All these vortices, i.e., the rings and the doublets, are special
because they have no extension in the z-direction.

With a finite frequency spread and with the axial uniform flow superposed, some
of the streamlines of energy flux circulate around these vortex rings if they are
very nearby to any part of a vortex ring. But much of this flow goes by without
making the trip around. There is a surface which divides the circulating flow
from the noncirculating flow for each vortex ring. There are stagnation points for
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the flow on these dividing surfaces. These points are intensity maxima, the Airy
rings and Arago spots. See Fig. 3.1 for a sketch of this vortex ring configuration
for the focal region for a uniformly illuminated circular aperture.

The rings have circulation all in the same sense of rotation around the axis,
while the doublets have their rotation all together in the opposite sense. This
sums to zero total angular momentum.

focal plane rings
S

on-axis ring

(doublet)

S

Fig. 3.1. Schematic of the streamlines of photon flow around the focal plane
vortex rings (only two are shown) corresponding to the Airy dark rings and the
whirls associated with one of the on-axis rings, corresponding to a dark spots of
Arago. The stagnation points in the flow are denoted by s, where the bright
spots or bright rings are located. The whirls are actually distributed uniformly
around the circumference of each of their underlying rings. The geometrical
focus is at the center of the Airy rings. Only parts of the nearly horizontal
streamlines are shown.

The width of the circulatory regions that surround each vortex ring depends on
the frequency bandwidth of the light, according to J. F. Nye and M. V. Berry,
Proc. R. Soc. Lond. A. 336, 165-190 (1974). Their Fig. 10 shows an enlarged
drawing of the region in the immediate vicinity of a vortex filament. A section of
a vortex ring would resemble a vortex filament. Their Fig. 10 is oriented at 90
degrees to Fig. 3.1. The intensity nulls, where the vorticity lies, can be thought
of as caused by interference between the wavelets that diffract from the edges
of the circular aperture, and by the interference at the focal plane between the
shrinking cylindrical wave in front of the focal plane and the expanding
cylindrical wave behind the focal plane.
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In Principles of Optics, 6th ed.,Pergamon Press, Oxford, 1980, pp. 445-6, M.
Born and E. Wolf describe the phase distributions in the focal region. In their
Figs. 8.45 and 8.46, the little open circles denote these nulls. These are also
the cross-sections of the vortex rings in the focal plane. Fig. 8.45 also shows
the on-axis ring, which is infinitesimal in diameter and equivalent to a doublet,
as in fluid dynamics. The ray paths shown above in Fig. 3.1, run perpendicular
to the co-phasal surfaces plotted by Born and Wolf in their two Figs.

Baranova et al. (Sov. Phys. JETP ,53(5), 925-929, May 1981 and J. Opt. Soc.
Am. 73(5), 525-528, May 1983) discuss the vortex filaments, i.e., the wavefront
dislocations that extend in the direction of the optical axis (z axis). Noisy
wavefields cause speckle patterns and cause creation and annihilation of
filamentary dislocations in pairs of opposite sign. The intensity is zero on these
filaments.

The treatment of the vortex filaments in Eqs. (3.12-3.17) could be generalized
by allowing the gradient, divergence, curl and Laplacian operators to include
the partial derivative with respect to z, too. The original energy transport
equation would include the contribution from the divergence of the flux
component in the z direction as well. The three-dimensional Laplace's
equation for phase ¢_owould be solved, except for the singularities where the
intensity is zero. The vector potential ._, would lie nearly parallel to the vorticity,
which exists only where the intensity is zero, Le, in a direction perpendicular to
both the gradient of the intensity and to the gradient of this phase. Earlier this
vorticity was introduced as a two dimensional delta function with a coefficient
such that this phase will change by +2_ around a filament (whether straight or
bent around in a ring). More generally, the filaments can be treated as three-
dimensional configurations carrying this unit of strength.

Then, the desired cyclic solution of Poisson's equation is obtained from

SVeo(p)= v x p')
(3.21)

(Biot-Savart law) for a general vorticity geometry. The position vector p (and p')
is in curvilinear coordinates, two of which lie within surfaces of constant intensity
and the third is perpendicular to them.

This phase _ reduces to the solid angle subtended by a simple closed three-
dimensional circuit of vorticity. The solid angle jumps by 4= upon passing
through the circuit. This causes an apparent discrepancy by a factor of two
when comparing the two- and three- dimensional cases, i.e., linear angle
around a length of filament vs. solid angle when passing through a closed
circuit.

When dealing with thin filaments along the z-axis (t-axis), as in the earlier
discussion for the two-dimensional case, Eqs. (3.14)-(3.17), the analytic function
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X(P) = J"d_"d2p__'_.qi6(2)(p±,_pj.j)____ qJIn}p±- Plj
IP'-Pl J i (3.22)

where the vorticity is given a discrete representation at the prescribed points
denoted by the two-dimensional P.Lj. These points include all boundaries of the
aperture and obscured regions, where the intensity is zero and where filament
images might be used instead of boundary conditions on the vorticity. This is
necessary to achieve parallel contours of intensity and of :Z, or orthogonal
contours with respect to eo. The coordinates in Eqs. (3.21) and (3.22) are
orthogonal to contours of constant intensity.

Based on the approximation in Eq. (3.22), the corresponding analytic function
for the cyclic phase is

eo (ri) = ,T_,qi arg(p±-pq)
i

A conformal transformation from P_LtO r.L completes the specification of the cyclic
solution.

3.2 Image Interpolation

The width of the mathematical square aperture in the pupil plane exceeds the
diameter of the primary mirror by a factor, na _./Xo, which allows interpolation
between the grid points that represent the pixels when a Fourier transform to the
image plane is performed. This factor corresponds to increasing the resolution
by exactly n a, which equals two or four, for example, independent of the filter

wavelength. The reference wavelength, Xo, is 0.508 #m (15.241_m / Fno.) for
the OTA/PC combination, whose effective Fno ' -- 30.

The intensity at each pixel is now shared by the n a x na pixels. These are
weighted according to relative intensities in a model calculation for images from
the aberrated OTA. The amount of aberration used here is given by the
equivalent of a conic-constant error that is typical of present knowledge about
the error. The distance of the image planes from the paraxial focus position is
an important parameter for the model calculation.

The image field is cropped, usually by a factor of two reduction. This is to avoid
aliasing when Fourier transforming back to the pupil planes. Aliasing, which is
due to undersampling, is the undesirable overlay of data from the apparently
equivalent periodic regions that arise from the assumption of sine and cosine
Fourier representations of the data.

3.3 Phase UnwraD.oing

The pupil phase is obtained from the arctan(ImH/ReH), where the argument of
the arctan function is the ratio of the imaginary and real parts of the field H. This
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phase lies between -_ and _, by definition of arctangent. The continuous phase
distribution is obtained from this generally discontinuous distribution by the
subroutine POLE that was obtained from the Roddiers (as reported at the Image
Inversion Workshop).

The method of unwrapping the phase is to add or subtract 2_ from the original
phase distribution at appropriate places. An elementary loop is formed by the
four adjacent pixels of each grid square of the pupil plane. Each phase
difference that corresponds to a side of each loop is checked to see if it exceeds
in magnitude the value _. If so, then the appropriate 2= is subtracted or added
to reduce each such phase difference to less than _ in magnitude. The new
phase differences are then summed around each such loop. Each sum, in turn,
is checked for zero value. If not zero then the center of the offending loop,
called a pole, is assigned a +2_ or a -2_ value, as appropriate to the sense of
circulation. Note that discontinuities of phase by the amount _ can still exist.
These corresponds to a phase change by going half way around a vortex
filament. These filaments are taken to be of unit strength, i.e., +__2_t,and not
integer multiples because such multiple filaments are believed to be unstable to
splitting into unit-strength filaments (B. Ya. Zel'dovich, et al. in Principles of
Phase Conjugation, Springer-Verlag, Berlin, 1985, pp. 79-84).

These poles are joined by straight lines (one line per pole) into closest pairs of
opposites in sign of circulation. Excess poles are joined to the nearest
boundary points of the aperture. The line joining such a pair of poles is called a
dislocation by the Roddiers. This is the branch cut for the multivalued phase
function. The vortex filaments themselves might better be called dislocations,
like the screw dislocations of solids.

The poles themselves are like vortices for the vector field formed by the phase
differences. As many as hundreds of poles are found in the retrieved phase
distribution, without using the averaging over azimuthal angle. With the
averaging, the number of poles drops to tens, for example. These poles may
have extension in the axial direction to form vortex filaments. Then, the Roddier
branch cuts would form sheets.

The phase distribution is obtained by summing the original phase differences
along horizontal rows (working from the bottom upward) until a dislocation is
encountered. Then, the appropriate jump of +2= is applied in the vertical
direction across the dislocation. At the end of this phase unwrapping the pixels
on the dislocations themselves are given the average values of their nearest
non-dislocation pixels. This last step removes any vestiges of curl contributions
in the pupil plane phase map.

3.4 End-to-End Wave O#tics Model

The'exit pupil phase contains the effects of the optical train even when free of
aberrations. To determine the effect of the aberrations alone, the ideal phase
should be subtracted from the retrieved phase, and the ideal pupil amplitude
divided into the retrieved amplitude. Furthermore, the defocusing operation on
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HST is done by displacement of the secondary mirror, which displacement
introduces additional aberrations besides defocusing that are modeled as well.

A calculation of the ideal phase and amplitude properties was done by Fresnel
propagation along the OTA and PC axes. This follows the Code V prescription
provided by JPL. An efficient Fourier transform technique is used to implement
the propagation from element to element in the train, in the presence of large
changes in magnification. This was related to the Talanov transformation,
according to S. Ebstein, and used by the Roddiers in their repeated Fresnel
transform (double Fourier transform) technique, as described at the first HARP
Image Inversion Workshop.

The mirror surfaces for OTA and PC are modeled by appropriate conics of
revolution (hyperboloids). The field flattener lens is modeled as a simple
paraboloid (quadratic phase factor) lens and spacer.

Test runs have shown the image at the focus of the OTA, namely, at the
pyramid, to be about as expected. However, the image produced at the image
plane of the PC was not like observed images. The propagation algorithm
through the PC was very similar to that for the QTA. The nature of the difficulty
was not clear.

While the end-to-end model was being debugged, phase retrieval test and
interpolation results were obtained using a primary and a camera mask for
specifying the input of relative intensities, i.e.,the zeros and ones of the two
pupil functions. For the simple simulations and interpolations, these two masks
were merely multiplied together and input at the primary mirror. However, the
end-to-end model has the PC6 mask input at the relay (camera) primary (or
somewhat upbeam), while the OTA mask was input at the OTA primary. These
masks consist of the near-central obscurations, the spider-support obscurations,
and, for the OTA, the three low-reflecting mounting pads. The PC6-channel
orientation of these elements was considered only.

3.5 Zernike PqlynQmie, I Fitting

The pupil plane wavefront phase map was expressed as a sum of polynomials,
chosen to be the orthogonal set of Zernike type with a 0.33 fractional radius for
a central obscuration. The first 22 of these were tabulated in the HST OTA

Handbook, vers. 1.0, May 1990. These were normalized to unity integral over
the clear aperture area, and, hence, unit rms value.

The least-squares routine obtained the coefficients of the polynomial expansion
by fitting the phase factor, the exponential function of i times the phase, rather
than the phase function itself. In part, this circumvents the ambiguities of
multiples of full waves. However, 3hase unwrapping was done to remove these
ambiguities anyway.

The error metric that is to be minimized is
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Error : ,T__,lexp(iCk)- exp(i®k)l 2 Hkl2/_JHk 2 (3.23)

where @k is the digital data to be fit and e k is the sum of Zernike polynomials.
The subscript k denotes data at points Xk within the annular aperture. The

quantity H k is the retrieved pupil field distribution. The sum with respect to the

subscript k in the denominator is the total power within the annular aperture.

®k = _ aMZM(Xk) (3.24)

The normal equations for minimization are used to solve for the increments z_aM
in the polynomial coefficients.

8Error _ -2,_, sin(_ k - ®k )ZM (Xk)
8aM

D2Error

OqaMOlaN
- 2,_, COS(¢k - ®k )ZM (Xk)ZN (Xk)

2Error1-1 8ErrorAaM=--_' 8aSa -JMN -_N
(3.25)

The matrix element is the MN th element of the inverse matrix of second
derivatives of the error metric. Sums are over the repeated index on the various

quantities on any of the right-hand sides.

These equations are nonlinear. During an iteration procedure they depend on
the previous values of the polynomial coefficients. Schemes for improving
convergence of the iterations that are performed in this minimization routine are
straightforward but untried here. Without the smoothing effect of phase
unwrapping this simple iteration procedure is usually unstable.

3.6 Error Estimates for Phase Retrieval

Noise Effects

By means of a reverse Strehl ratio calculation, i.e., averaging over the image
plane instead of the pupil plane, and by the Cumulant Theorem (see M.
Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, U.S. Gov't,
Wash.,DC, 1972, p. 928 (item 26.1.12); and R. Kubo, "A Stochastic Theory of
Line Shape and Relaxation," in Fluctuation, Relaxation and Resonance in
Magnetic Systems, ed. D. Ter Haar, Plenum, NY, 1962, pp. 23-68) on
exponential functions, the variance of the pupil plane phase (in radians) is
obtained from
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(exp(iS@)}= exp(i(5@>-2<5¢2>)

= (exp(Slnh + i_¢)>= exp(i<SlnhlS¢>+ }[<(51nlhl)2>- <5e2 >])
(3.26)

the usual factor exp<lnlhl>was included in the definition of thewhere averaging

in order to create the aperture function by Fourier transform, and was not
included as part of the contribution to the phase. The imaginary-valued cross-
correlation term contributes to the average pupil phase.

Then,

< >----l</,,ol.
(3.27)

< > denotes the spatial weighted-average over image area, instead of over the

usual pupil area for the usual Strehl ratio. The & denotes the statistical
deviation due to noise or other random effects. Specifically,

<exp(i(_¢)> = J"d2r exp(-2,,du, r)h o(r)exp(Slnlh I+ i&_)
J"d2r exp(-2 _iu. r)h o(r)

where

(3.28)

<f(51n h, 5¢)> = J"d2r exp(-2_iu" r)h° (r)f(SIn hi' 6¢)

for any function f of the fluctuations. The underlying image field ho produces the
aperture function by Fourier transform.

It is simple and reasonable to assume that the statistical probability distribution
is Log-Normal for image intensity and Normal, i.e., Gaussian, for image phase.

The subtractive term on the right-hand side of Eq. (3.27) will be smaller than the
second term on the right-hand side, according to the estimates below, and as
required by the positivity of the left-hand side of that equation.

The fluctuation in logarithm is related to the small noise fluctuation by
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31nh 2 _-_In(signal + noise) - (In(signal + noise))

= 5noise / (signal +(noise))

so that, for example,

1

(( ln hl2)2/---(I+SNR)2
(3.29)

for a simple exponential noise probability distribution over the image area, for
which

(5 noise2 ) = (noise) 2

SNR denotes the signal-to-noise ratio for area-averaged quantities. This does
not refer to temporal statistics at a given pixel, which are close to Poisson
statistics, for which

(Snoise 2) = (noise)

The Cumulant Theorem was applied, over the image area, to assumed spatial
Gaussian statistics for the random variables in the exponents. This simple case,
for which the cumulant sum is truncated at the second term, is the limit for any
type of statistics when the fluctuations are weak and/or compact. That is, the
value of the product of rms modulation of spatial gradients of the random
variables and correlation distance is smaller than one. If the correlation

distance is only on the order of a pixel or two, then the rms gradient of
In(intensity) need be small over that distance.

But with the more relevant Poisson noise statistics over the image area, in
terms of numbers of noise equivalent-photoelectrons and signal photoelectrons
per image, Eq. (3.29)becomes

(noise)
((51nl h 2)2) ____(signal + (noise)) 2

<noise) -1

(I+SNR) 2
(3.30)

SNR of greater than tens are found for the cropped images, while at least a few
hundred noise equivalent-photoelectrons per pixel would be found. About 128
x 128 pixels are used per image.

The image phase, e, excludes tilt and focus terms, in effect, because of the

Fourier transform phase term: -2=u-r, which is implicitly included. The quantity
u is the pupil plane position, in spatial frequency or in spatial pupil-plane
position divided by _.F, at which the variance of the phase @ is being estimated.
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With no central obscuration, this would be at the center of the pupil plane
corresponding to u=0, in the spirit of a Strehl ratio. However, the variance in
Eq. (3.27) is evaluated at a typical point in the clear aperture, where the
aperture function is unity.

An estimate of the phase error is obtained by way of the phase retrieval
equation, Eq. (3.18), when a simplification is made that the term involving the
gradient of the reciprocal intensity can be neglected. This is explained as
follows:

In the absence of dislocations, near an intensity maximum,

where

V _ = - zV-2V 81hI211
8B

Note that

V2 18 _ 82
r-_+= r2o 02

for the two-dimensional case dealt with here.

dr' _, 'r'Y'=f Tf'oo

For angle-independent quantities,

(3.31)

where the lower limits of integration were chosen to eliminate logarithm and
constant terms.

Upon making use of the operator identity

V.V-2V:I

which follows from interchanging the order in which partial derivatives are done,

V-2V = V V -2

and from using the definition of the taplacian operator

V.V=V 2
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and, for the sake of simplicity, upon neglecting the gradient of the reciprocal
intensity near an intensity maximum, where the gradient vanishes, the retrieved
phase is approximately

¢ = _ =_7_2__1 _,. V,_2V 81hi2 _:V_2 1 alh 2
}h2 aB =- lh]2

or

(3.32)

Then, with the finite difference approximation to the derivative with respect to
the amount of defocus between the two image planes

81nlh2 _ _lnhl2
Q

8B ,_B

and with the variance of this quantity

112/___
and, with the variance of V'2 Inlhl2''

given by

/_ I" dr' f;'dr,Y, fo2"
de Sn(r")12 /2= s+n 2

----J'-_-_ln(r°/r')'r_ In(r°/r'') s+n s+n
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2(2tc) 2 (s+n) 2 -

2 2
_'I'(_dpixeI

2(2rc) 2 (1 + SNR) 2 (noise)

then

°qlnh2 12 /8B

1 -}2 1
,1.2 z_z I+SNRJ npix_, (3.33)

where &z is the defocus distance, and _ro 2 = No 2 dpixel 2 ,where ro is the radius of
the image region. No 2 is the number of pixels utilized per image. There is an
extra factor of two in the numerator because the variance is of the difference of

two fluctuating Inlhl 2 quantities in Alnlhl 2. The & denotes deviations from the
appropriate spatial mean. The pixel size dpixe I = _q:)Fno" Note that the subtractive

term in Eq. (3.27) can be ignored when relating Eq. (3.33) to the pupil phase
variance.

Slipping the angular brackets inside the integrals is done by an appropriate
interchange of the order of integrations. The statistical approximation for the
noise correlation function

(6n(r')6n(r")) = ((6n(r')) 2)d_,x.,5 (2)(r'-r") (3.34)

was used. This is equivalent to treating the noise in the different pixels as
statistically independent of each other. This whole procedure is somewhat
cavalier, but useful for a rough estimate of the variance.

The average signal density per unit area was denoted by s and the average
noise areal density by n. That is,

n = (noise) / (_o 2)

Note that the noise per pixel is

npixeI= (noise) / N2
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This phase error is inversely proportional to (1 + SNR)_ With SNR
between 10 and 100, with ;L =0.959 Xo at 487 rim, with No = 128, and with z_z = 2

Fno. 2, as iS the case for these data, the rms phase error is between 0.01 and
0.001 waves, respectively, when there are a typical 100 equivalent noise

photoelectrons per pixel, a convenient reference level.

Defocus Error

Other sources of error might dominate this noise error. The so-called breathing
in and out of the focal position is such a case, especially if the characteristic
time is comparable to the data integration time, while the amplitude of the effect
is comparable to the separation distance of the pair of image planes used for
phase retrieval. There is no indication for such a difficulty from these results.

Shorter exposure images, with the narrower central peaks, were dealt with first.
These would be less affected by the breathing defocus action and also less by

alignment jitter.

If the error in the image plane separation Az is important, then

rdr' rr'dr,Y, 1-2=de o_2 Inlhl2 &(z_B)
--- =.['o r' Jo Jo 2= o_B2

(3.35)

Here the angular brackets denote averaging over the ensemble of fluctuations
in the defocus distance.

For simplicity in evaluating the second derivative, the image intensity is
temporarily assumed Gaussian-shaped, having width that fits to the diffraction
from a uniformly-filled aperture and that has blurring due to defocusing a
distance z from paraxial focus. The blurring due to spherical aberration is

deferred from consideration for the moment.

inh 2 _lnh ° 2 _
/ 12;rtr

2AFno

l+w 2

and

TRW 22



821nh 2 w2 3w2-1I _ 12_--_ _=2 _ (_+w-_-)-3 2Z---_-_o'
(3.36)

where

_B

w- 8Z2F_o 16ZF2o.

Then

(3.37)

Note that the rms error increases with the fourth power of the radius in the

image, when the quadratic dependence in the second derivative is included.

A fractional error 8(AB)/z_B of 10 percent (say, 0.5 pm out of 5 I_m in Goddard
units) yields 5(Az.) = 0.0086 cm. When z = -1.96 cm (at -114 Goddard units) and
the quantity for blurring w = -8.8, then an rms phase error of 0.04 waves is
estimated at the edge of the image. If the variance is averaged over the image
area, the final rms error relevant to the pupil phase is a factor 2.236 smaller.
Then, the pupil phase error is approximately 0.018 waves.

These are only rough estimates, while errors in AB are not yet known. There is
no strong evidence that the breathing motion of focus jitter has greatly affected
the difference quantity &B in the measurements at 487 nm that were used here.

Other Errors

The quantity.B itself is to be measured from the paraxial focus position, which is
a parameter that is varied as part of the least squares fitting to Zernike
polynomials.

Another error source has been the unwrapping of the phase, where the pupil
wavefront dislocations are smoothed over, in a final step. The full two-
dimensional Fourier method of phase retrieval yields a wavefront with many
dislocations. Zernike polynomial fits to these smooth unwrapped phase
distributions seemed consistently shifted from the corresponding fits to the
azimuthally-averaged (one-dimensional) phase distributions. This shift has not
been made quantitative yet, due to the limited number of runs in the two-
dimensional case, and due to the wider polynomial set allowed for this case.

The Zernike fitting introduces errors due to a dependence on the number of
polynomials that are allowed in the set to be fit, even in the simple cylindrically
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symmetric case. When the HST OTA Handbook Z22 polynomial (fifth order
spherical aberration) is included along with the usual Z1 (piston), Z4 (focus) and
Zll (third order spherical aberration), a limiter on the amount of change in
coefficient for Z22 at each iteration sometimes has to be introduced to prevent
numerical instability. Apparently, there is some underlying interdependency of
the variables that makes the inverse matrix elements small when involving this

last polynomial.

Error due to digitization with 12 bits has not been a difficulty. The dynamic
range of 0 to 4095 seems adequate to handle the large central peak of the point
spread function. Saturation effects on the images have been avoided by
choosing those image pairs with the narrower central peaks.

Shot noise and read-out noise were the main contributors to the noise in the

signal-to-noise ratio estimated to be between 10 and 100.

Flat-fielding error and errors due to cosmic-ray spike removal were not
evaluated. These were not expected to contribute more than the shot noise in
the image central region that contributed most significantly to this phase
retrieval.
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4.0 Major Findings

4.1 Ta?k Results

4.1.1 Ta_k 1. HST Point Source Imaaes

Digital data of point source images were obtained from the JPL VAX facility via
magnetic tape and SPAN in September. The data were of the same source at
different wavelengths and at different focal positions. The focal position was
changed aboard HST by movement of the OTA secondary mirror. Attention was
mainly directed to the data set designated PC6F487N_G1.FITS, ...H1 .... ...11 ....
and ...G2...,...H2...,...12 .... These data correspond to narrow band 487-nm signal
with the OTA secondary mirror at the Goddard positions of -5, 0 and 5 I_m. This
early choice was made on the basis of proximity of the positions to the 'best'
focus, and the small despace between images.

Digital data of point source images were obtained from the JPL VAX facility via
magnetic tape in November. The data were of the same source at different
wavelengths and at different focal positions. Attention was directed to the data
set designated PCF487N_Ql&2.FITS and PCF487N_P1&2.FITS. These data
correspond to narrow band 487-nm signal with the OTA secondary mirror at the
Goddard positions of -267 and -260 _m. At these same Goddard positions, but
with narrow band 889-nm signal, the set PCF889N_O1 &P1 .FITS was also
analyzed. These choices were made on the basis of small despace between
images, while representing cases of severe blurring.

The images appear to require no additional registration within the image frames
for centering the images on each other.

4.1.2 Task 2. Phase Retrieval Code

The phase retrieval code was implemented on other simple test cases. Large
arrays (256 X 256) were used to reduce the raggedness of the circular edges
on the numerical grid. Effects of filtering out high spatial frequencies in the pupil
phase function was explored. Flat phase to less than 0.06 waves was retrieved
for the input flat phase case with the centrally-obscured circular aperture.

The phase retrieval code was modified to deal with a cylindrically-symmetric
average of the data. The differential equation of this direct phase retrieval
technique is now integrated in the radial coordinate in the image plane. This
substitutes for the Fourier transform equation-solving technique used for the
general case.

The rings of zero intensity in the image plane caused half-wave phase jumps.
These are dear with more accurately in the cylindricatfy-symmetric, non-Fourier
equation-solving case. These zeros arose from the hard edges of the apertures
in the near-field. The reconstruction of the pupil plane amplitude and phase
would better show the obscuration characteristics of telescope and camera
when the half-wave phase jumps are calculated better in the image plane
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phase distribution. However, an accurate reproduction of the pupil plane
characteristics would require the full two-dimensional phase retrieval technique.

The energy transport equation for the cylindrically-symmetric case is

-z-- = --[rl(r,B
o_B roar (4.1)

where I(r,B) is the image intensity distribution (averaged over azimuthal angle)
in the plane, whose axial coordinate is proportional to the defocus parameter B.

This equation is integrated to solve for the phase in the image plane.

= - _.[_dr'
1 ' o_l(r",B)

r, i(r,,B)J'_ dr''r'' o_B
(4.2)

This solution has the boundary conditions built in that the phase is zero at the
center and that its slope is also zero there.

Note the division by the intensity within the last integration. The zeros of
intensity, as discussed before, lead to half-wave jumps in phase. In principle,
these jumps would result from the integration. However, in practice the values
of intensity in the vicinity of each zero are known only very roughly on the image
plane grid. The intensity values are small near the zeros and introduce errors in
the result. For reasons that involve reintroducing terms that were dropped in the
paraxial or Fresnel approximation right at the beginning, this denominator was
replaced by the following more accurate and less offending quantity:

2+b2

where the original denominator

a = r'l(r',B)

and the new contribution

b = - _F'dr"' _l(r", B) r"
,tO k_B

where k =2_/X.

The quantities a and b are proportional to the components of the local ray
direction. This follows from a good approximation that the rays lie on the
surface of constant enclosed power, which is the area integral of the intensity up
to a radius r. It follows from the energy transport equation that while the
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curvature of the rays is slight so that V2_ -=0 as in incompressible flow, (the
Laplacian now includes the second order z-derivative), and while the rays are
still mainly parallel to the z-axis and the intensity changes are mainly radial, the
slope of a ray is approximately

dr 8P/8-z

dz 8P / o_r (4.3)

where the enclosed power P is

P = 2=j'_drt'l(r',z)
(4.4)

Note that z and B are proportional. Note also, that exactly at a vortex position,
the quantity b, as well as a, is zero, whereby the ray direction is indeterminate.

However, with this modified denominator, the phase e is correctly given by the
ray path integral along the radial direction, with the appropriate sine of the
angle of this ray with respect to the axis, instead of the tangent of this angle.
The two trigonometric functions are usually nearly equal, except where the
intensity is small, and where the dominance of the axial wave vector component
is no longer a good approximation. Nevertheless, the new integrand is now
bounded, since the sine, in magnitude, is less than or equal to one.

A similar revision of the denominator in the two-dimensional phase retrieval
algorithm was introduced.

The wave optics propagation routine for dealing with the different planes
containing obscurations, apertures and other optical elements of the OTA and
the PC was developed. Details of the pads and spiders were introduced for the
OTA and the PC models. The secondary mirror position can be changed to
cause defocusing of the image. The aberrations introduced by this change can
be modeled with this code, as well as providing test images for phase retrieval
and for interpolation between the pixels of actual data.

As an instructive exercise, the prescription, provided by JPL, for the HST ©TA
and the PC, was entered into Code V at TRW. Various plots were made to
clarify the configuration.

Appropriate geometrical specifications were introduced into the wave optics
code to nearly complete the end-to-end propagation capability that this code
would provide.The strategy to distinguish the phase aberration contributions of
the OTA primary from those of the secondary mirror would depend on this code,
when used for cases of different incident field angles for the star images. Also,
besides changing the focal position, motion of the secondary mirror produces
small aberrations to the wavefront.
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4.1.3 Task 3. preliminary_ Wavefront Characteristics

The test cases indicated that the polynomial fitting was sensitive to even very
small effects such as the rapidly varying intensity and phase conditions at or
near the pupil edge, and the discrete square grid of input data that impressed a
four-fold symmetry on the retrieved phase.

The even-simpler test case of uniform phase (i.e., no spherical aberration) over
a circular aperture, with a circular central obscuration (like the OTA case),
revealed similar four-fold symmetry features, even for the 256 X 256 element
pupil-grid case.

The (second) iterative fitting scheme outlined by J. R. Fienup (HARP Image
Inversion Workshop, Nov. 1990) was implemented to decrease sensitivity to
phase unwrapping. However, the normal equations for minimization were used
to supply the changes in coefficients for the next iterations.

The Goddard position for paraxial focus was varied from case to case until a
best fit was obtained according to the least residual error. The interpolation
between pixels was redone for each of these cases.

The phase unwrapping routine of C. and F. Roddier, discussed briefly at the
November HARP Workshop, was implemented. The routine has run, where
hundreds of wavefront jumps (dislocations) were unwrapped and smoothed for
the Fourier, two-dimensional phase retrieval technique, while only tens of
dislocations arose and were handled in the cylindrically-averaged version of
the phase retrieval.

4.2 Seoaratina Primary and Secondary Aberration Contributions

The strategy for separating the contributions from the three sources: the primary
mirror, the secondary mirror and the camera, was still being formulated. The
fact that the phase contributions would be weighted differently with changes of
field angle would be critical.

The geometl:ical optics limit would yield the resultant OTA phase as the sum of
the phase contributions from primary and secondary mirrors along any given
ray path between them, and then on to the image. Wave optics alone would
make a very small, angle-dependent, correction to this sum.

d2K fp(K)fps(K- AK)fs([K + AK---_]M)h(r) = j" (2_) 2
(4.5)

where K is the Fourier transform wavevector variable in the two-dimensional

integral, k is the usual 2_/X, AK is the wavevector corresponding to the off-axis
field angle, M is the secondary magnification (based on the secondary's
illuminated diameter), and F is the effective focal length of OTA
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fp(K) = F. T.[exp(i&_p)]

is the coherent point spread function for the OTA primary, where /k_p is the

phase deviation from _ shape of the primary.

fps(K) = Mexp[-iK2Md / 2k]

is the wave propagator between primary and secondary (distance apart, d).

fs(K) = F.T.[exp(iz_s)]

is the coherent PSF for the OTA secondary, where Aq)s is the phase aberration

of the secondary. F.T. denotes Fourier transform operation.

In the geometrical optics limit: fps(K) = M so that

h(r)- MJ" d2K fp(K)f,([K +z_K- _--[-r]M)
(2_:) 2

= F.T.[exp(iz_C_p +iA_s)] (4.6)

where z_@p + z&@s is evaluated at points on the same ray that goes from

primary to secondary mirror and onward.

The small correction for wave optics is obtained by Taylor expanding the

propagator fps.

Ah(r) ___-MJ" d2K fp(K)(-iK-,_KI2Md / 2k)f,([K + AK ---_]M)
(2re) 2 (4.7)

This correction term is inversely proportional to the Fresnel number of the
secondary mirror, owing to the fact that the typical spatial frequencies
associated with K are only of the order of the reciprocal diameter of the primary.
The two magnification factors lead to a Fresnel number based on the diameter
of the secondary. This Fresnel number is very large, so that the effect of wave
optics, compared to geometric optics is small in this case.

The important point is that the sum of phases, primary plus secondary, is
different for different angles of input wavefront tilt, given by &K. If the
contribution from the primary is nearly the same then the change in the sum is
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mainly due to the secondary. Thus, data for different off-axis objects would yield
the required information on the secondary mirror.

This procedure was not attempted, however. Effects of the images lying near a
corner of the CCD chip rather than near the center, and other effects, needed to
be evaluated first.

4.3 Conic-Constant Error

The relationship between the Zernike spherical aberration coefficient Z11 (#m)
and z&K' the error in conic constant is related to the fourth-order dependence on
p, the fractional radial distance in the pupil plane. For the spherical aberration
coefficient, the optical path difference (in meters) due to the mirror deformation
is

OPD = &K' r p4/(8 R3) = 0.5 Zll 10 -6 16.896 p4 (4.8)

where r - 1.2 m, the radius of the primary mirror, and R = (11.04 m)/(1.2 m), the
ratio of the radius of curvature to the mirror radius. The factor of 0.5 converts

wavefront phase to mirror deformation. The factor 16.896 provides the correct
spherical-aberration polynomial normalization, with a 0.33 obscuration ratio, so
that over the clear aperture, the area integral of the square of the polynomial is
unity. Then, the coefficient is the rms value of spherical aberration over this
clear aperture annulus.

Values for Z 11 at the wavelengths 0.487 and 0.889 p.m were -0.27 and -0.28
p.m. The reason for the discrepancy is not known. These two wavelength cases
were from HARP 1A and 1B data, respectively. A similar difference of Zll has

been noted by R. Lyons (at the second HARP workshop) for these data sets,
irrespective of wavelength.

At 487 nm, the Zernike polynomial coefficients (0.33 obscuration ratio) in waves,
for piston, focus, third order and fifth order spherical aberration, with the paraxial
focus distance at -114.0+0.02 Goddard units, were

based on H1-11 data:
Z1 = -3.69+0.01, Z4 = -2.95+0.01, Zll = -0.560+0.002, Z22 = 0.0378_-_+0.002;

based on G1-H1 data:
Z1 = -3.59+0.02, Z4 = -2.85+0.01, Zll = -0.553+0.003, Z22 -- 0.0006+0.003.

Compare these with
Zl = -3.54, Z4 = -2.70, ZI_ = -0.560, Z22 = 0.0 ,

for a pure quartic:
-0.273 p.m 16.896 p4
for the effect of conic constant error. Note that Z22 should be negligible (of order

10 -4) for the actual (hyperboloid) conic figure of revolution. The first factor in the

coefficient of p4 is the derived Z_I in waves times the wavelength in p.m.
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At 889 nm, the Zernike coefficients in waves, with paraxial focus distance at the
later observation date approximately equal to -119+1 Goddard units, were

Based on O1-P1 data:
Z1 = -2.15_+0.01,Z4 = -1.64_+0.01,Zll - -0.319+0.005, Z22 - -0.0951+0.0003.

Compare with
Zl = -2.01, Z4 = -1.54, Zll = -0.319, Z22 = 0.0,
for a pure quartic:
-0.284 p.m 16.896 p4
for the effect of conic constant error. Again, the first factor in the coefficient of p4
is the derived Z_ times the wavelength in p.m.
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5.0 Conclusions

The retrieval results indicated sensitivity of the fitting of Zernike coefficients to
symmetry anomalies in the data, such as the four-fold symmetry due to the
square grid of pixel intensity data. The data, when averaged over angle in the
image plane, and the direct integration technique, using only the radial
coordinate, helped to overcome this difficulty.

The phase unwrapping (full-wave jump smoothing) routine of the Roddiers
handled the fragmented phase that was retrieved, especially when the input to
the retrieval was image data that was averaged over angle around the central

pixel.

The derived Zernike coefficients depended on the paraxial focus position
chosen. However, when the Goddard position of the paraxial focus was varied
as a parameter, a definite best fit was found. This was characterized by a
significantly lower residual error than found at neighboring values of paraxial
focus positions. The paraxial focus was, thus, found to be -114.0 p.m for the
HARP 1A 487-nm data. The results for the HARP 1B 889-nm data were less

definitive with respect to low residual error, owing to the much more blurred
images and owing to some constraint needed on the Z22 coefficient during
fitting.

The Zernike coefficient Z11 (HST OTA Handbook) was -0.27 and -0.28 _m for
the H1-11 and O1-P1 pairs of images, at 487 and 889 nm, respectively. By
using the formula obtained from the previous OPD relation,

AK' = Z 11/22.802 (5.1)

the error offset in conic constant is -0.0118 and -0.0123. The rms error in the

Zernike coefficient was +0.005. This was estimated from the standard deviation

for fitting (converged iterations) of the polynomial coefficients at 889 nm,
associated with a narrow range of paraxial focus distances (-119+1 ). The error
due to polynomial fitting in the 487 nm data was somewhat less.

The design conic constant was -1.0022985. Then, the estimated conic constant
is -1.0141 for the 487-nm HARP 1A data and -1.01 46 for the 889-nm HARP 1B

data, with rms error of _+0.0002 due to polynomial fitting.
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